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Abstract: LLNL is actively engaged in the development of a variety of advanced technologies for use in detecting 
potential threats in sea-going cargo containers, particularly the presence of hidden special nuclear materials (SNM). 
One such project is the so-called “Nuclear Car Wash” (NCW), which uses a high-energy neutron probe to scan the 
container. High-energy, β-delayed γ rays emitted during the decay of short-lived, neutron-induced fission products 
are then taken as a signature of fissionable material. There are a number of different threat decision metrics that one 
could imagine using in conjunction with an inspection system such as the NCW; however, the most straightforward 
approach might be to simply compare the total number of counts that our detector records during some suitably cho-
sen time interval to the average background signal that one would expect from a “clean” container during the same 
interval. The purpose of this report is to describe the basic statistical properties of a decision metric of this sort and 
outline the procedures for using it in experimental practice. 

1. Introduction 
 
 LLNL is actively engaged in the development of a variety of advanced technologies for use 
in detecting potential threats in sea-going cargo containers, particularly the presence of hidden 
special nuclear materials (SNM). One such project is the so-called “Nuclear Car Wash” (NCW), 
which uses a high-energy (En ≈ 3.5-7.0 MeV), D(d,n)3He neutron probe to scan the container [1]. 
High-energy (Eγ ≥ 2.5 MeV), β-delayed γ rays emitted during the decay of short-lived, neutron-
induced fission products may then be taken as a signature of fissionable material [2] since there 
are relatively few neutron-induced or naturally-occurring interference signals above a few MeV 
in energy. The ultimate sensitivity of this (or any other) cargo inspection system will depend on 
the acceptable false alarm rate (

! 

Pfa ), the required probability of detecting real threats (

! 

P
d
) and, 

of course, the decision metric used to make the call. 
 There are a number of different, potentially very powerful, threat decision metrics that one 
could imagine using in conjunction with an inspection system such as the NCW (e.g. those re-
cently proposed by Pruet, et al. [3], which involve multi-parameter fits to the time structure of 
the observed data); however, the most straightforward approach (and perhaps our initial “call to 
arms”) might be to simply compare the total number of counts that our detector records during 
some suitably chosen time interval (e.g. one which will allow us to capture the majority of the 
delayed γ rays from short-lived SNM fission products, if any) to the average background signal 
that one would expect from a “clean” container during the same interval. The purpose of this re-
port is to describe the basic statistical properties of a decision metric of this sort and outline the 
procedures for using it in experimental practice.1  
 
                                                
 
1 Note that, while this may on the surface seem hardly worthy of a formal report, the devil lies in the details and the 
correct procedures for using a metric of this sort may not be what one would naively expect … 
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2. Analysis in terms of measured counts 
 
 In order to make semi-quantitative estimates for critical threat signal levels and their associ-
ated signal-to-noise ratios, we will assume that the total number of counts 

! 

" " S  that our detector 
records during a time interval ∆ t  is a discrete random variable drawn from a Gaussian-like dis-
tribution whose mean and variance are given by: 
 
  

! 

" " S = " " S = " " T + " " B = " " T + " " B  (1a) 
  
   

! 

" # # S 

2
=" # # T 

2
+" # # B 

2
= # # T +" # # B 

2  , (1b) 
 
where 

! 

" " T  ≥ 0 is our SNM threat signal (assumed to be distributed Poisson), 

! 

" " T  is the hypotheti-
cal mean value of 

! 

" " T  (e.g. if we could sit and take repeated measurements of 

! 

" " S ), 

! 

" " B  > 0 is the 
actual background signal present during the interval and 

! 

" " B  is the mean value of 

! 

" " B  (averaged 
over many ∆ t  intervals and many containers). The distribution of the background signal is still a 
subject of debate at this point. If 

! 

" " B  is distributed Poisson (as is likely the case, since the back-
ground will be due largely to neutron-induced and naturally-occurring radiation sources), then 

! 

" # # B 

2  will be ≈ 

! 

" " B ; however, there is also anecdotal evidence to suggest that 

! 

" # # B 

2  may be as large 
as 

! 

" " B 
2  (pessimistic case) [4]. Since the vast majority of containers scanned will (we hope) not 

contain SNM (i.e. 

! 

" " T  = 0 

! 

" 

! 

" " S  = 

! 

" " B ), this issue will resolve itself in time as we inspect more 
and more containers with a variety of cargos and eventually establish stable values for 

! 

" " B  and 

! 

" # # B 

2  using standard unbiased estimators such as: 
 

  

! 

" " ˆ 
B = " " B 

i
N

i = 1

N

#  (2a) 

 

  

! 

ˆ " # # B 

2 = # # B 
i
$ # # B ( )

2

(N $1) %
i = 1

N

& # # B 
i
$ # # B ( )

2

N

i = 1

N

&  , (2b) 

 
where N (large) is the total number of measurements made; therefore, we will take 

! 

" " B  and 

! 

" # # B 

2  
to be known quantities in the following analysis. 
 The threat decision metric of interest to us here is again simply 

! 

" " D  = 

! 

" " S -

! 

" " B , i.e. the differ-
ence between the total number of counts that our detector records during a time interval ∆ t  and 
the average background signal that one would expect from a “clean” container during the same 
interval. The mean and variance of 

! 

" " D  are given by: 
 
  

! 

" " D = " " D = " " S # " " B = " " T + " " B # " " B = " " T + " " B # " " B = " " T  (3a) 
 
   

! 

" # # D 

2
=" # # S 

2
+"

# # B 

2
=" # # T 

2
+" # # B 

2
+"

# # B 

2
= # # T +" # # B 

2
+"

# # B 

2
$ # # T +" # # B 

2  , (3b) 
 
where we have made use of the fact that, for N large (i.e. after we have inspected many “clean” 
containers), 

! 

"
# # B 

2  = 

! 

" # # B 

2
N  

! 

" 0 (i.e. the metric becomes more robust). The process of deciding 
whether or not a given measured value of 

! 

" " D  implies the presence of a real threat (i.e. 

! 

" " T  > 0) 
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involves determining whether or not it can be confidently identified as a “statistical outlier” in 
relation to the known distribution of data on “clean” containers. In our case, this essentially re-
duces to determining the “statistical significance” of 

! 

" " D  based on the known (or hypothesized) 
values of 

! 

" " D  and 

! 

" # # D 

2  [5]. Having assumed Gaussian-like distributions, we may therefore de-
fine a standard normal test statistic of the form: 
 

  

! 

z =
" " D # " " D 

$ " " D 

 (4) 

 
to help us to make quantitative decisions of this sort about the value of 

! 

" " D . 
 In spite of the potentially dire consequences of failing to detect a hidden nuclear threat in a 
cargo container (e.g. admitting entry of clandestine nuclear material or even a nuclear device), 
the intense nature of operations at a port facility will usually require that containers be given a 
“speedy trial” (e.g. ≈ 1-2 min interrogation times) during which they are presumed to be “inno-
cent until proven guilty beyond a reasonable doubt” in order to avoid (or at least minimize) the 
almost certain drawbacks associated with generating an excessive number of false alarms (e.g. 
impeding the flow of commerce, developing a reputation as “the system that cries wolf”, etc.); 
therefore, we will adopt 

! 

" " D  = 

! 

" " T  = 0 (

! 

" 

! 

" # # D 

2  = 

! 

" # # B 

2 ) as our “null hypothesis” and recast the 
test statistic of Eqn. (4) as: 
 

  

! 

z
1

= z ( " " T = 0) =
" " D 

# " " B 

 (5) 

 
We may then specify a critical value of 

! 

" " D  via: 
 
  

! 

" " D (crit) = z
1
(crit)# " " B 

 (6) 
 
which makes 

! 

Pfa  (false alarm) = 

! 

P (z
1
" z

1
(crit)) = 

! 

"  is as small as needed to meet operational 
goals (e.g. 

! 

z
1
(crit)  = +3.100 

! 

" 

! 

"  = 0.001 (based on a standard normal distribution))2. If 

! 

" " D  ≥ 

! 

" " D (crit) , we may confidently reject our “null hypothesis” and declare the container to be a nu-
clear threat knowing that the probability of our being wrong is less than or equal to 

! 

" . Sample 
plots of 

! 

" " D (crit)  vs. 

! 

" # # B 
 and 

! 

" " B  are shown in Figures 1a and 1b, respectively. 
 Once the critical value of 

! 

" " D  has been specified for a given acceptable probability of false 
alarm 

! 

Pfa  = 

! 

"  and known value of 

! 

" # # B 
, we may assess the “power” 

! 

" ( # # T |$)  of the decision 
metric (i.e. the probability that we can detect an average threat signal 

! 

" " T  > 0) by recasting the 
test statistic of Eqn. (4) as: 
 

  

! 

z
2

= z ( " " T > 0) =
" " D (crit) # " " T 

" " T +$ " " B 

2
=

z
1
(crit)$ " " B 

# " " T 

" " T +$ " " B 

2
 (7) 

 
                                                
 
2 Note that standard normal probabilities such as P(z ≥ z(crit)) = 1- P(z ≤ z(crit)) may be calculated in spreadsheet 
programs such as MS Excel® using the NORMDIST() function (e.g. P(z ≥ z(crit)) = (1-NORMDIST(z(crit))). 
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and then plotting 

! 

" ( # # T |$)  = 

! 

P (z
2
" z

2
(z
1
(crit), # # T ))  = 

! 

P
d
 (detection) as a function of 

! 

" " T  (cf. 
Figure 2 for sample plots of 

! 

" ( # # T |$)  vs. 

! 

" " T  at fixed values of 

! 

" # # B 
). Alternatively, if we have 

already defined a specific target value of 

! 

P
d
 = 

! 

P (z
2
" z

2
(crit)) = 

! 

" ( # # T (crit) |$)  based on per-
formance requirements (e.g. 

! 

" ( # # T (crit) |$)  = 0.950 

! 

" 

! 

z
2
(crit)  = -1.645), we may solve Eqn. 

(7) directly to obtain 

! 

" " T (crit) as a function of 

! 

" # # B 
: 

 

  

! 

" " T (crit) =
1

2
2 z

1
(crit)# " " B 

+ z
2
(crit)

2
$ z

2
(crit) 4# " " B 

2 + 4 z
1
(crit)# " " B 

+ z
2
(crit)

2{ } . (8) 

 
Sample plots of 

! 

" " T (crit) vs. 

! 

" # # B 
 and 

! 

" " B  are shown in Figures 3a and 3b, respectively. 
 The signal-to-noise ratio (SNR) associated with a specific value of 

! 

" " T (crit) may also be of 
interest from an experimental point of view. By definition, this is given by: 
 

  

! 

SNR( " " T (crit)) =
" " T (crit)

# " " T (crit )

2
+# " " B 

2
=

" " T (crit)

" " T (crit) +# " " B 

2
 , (9) 

 
where 

! 

" " T (crit) has the functional form shown in Eqn. (8). Sample plots of 

! 

SNR( " " T (crit)) vs. 

! 

" # # B 
 

and 

! 

" " B  are shown in Figures 4a and 4b, respectively. It is interesting to note that 

! 

SNR( " " T (crit)) 

! 

" 

! 

z
1
(crit)-

! 

z
2
(crit)  as 

! 

" # # B 
 

! 

" 

! 

"; therefore, for a plausible set of NCW operational parameters 
such as 

! 

Pfa   = 

! 

P (z
1
" z

1
(crit)) = 

! 

"  = 0.001 and 

! 

P
d
 = 

! 

P (z
2
" z

2
(crit)) = 

! 

" ( # # T (crit) |$)  = 0.950, 

! 

SNR( " " T (crit)) (i.e. the threshold SNR for 

! 

" " T ) should not exceed a value of 4.745, regardless of 
the measured value of 

! 

" # # B 
. 

 Finally, so-called “Receiver Operating Characteristic” (ROC) curves are generally accepted 
as the standard way to graphically summarize the performance of a decision metric. In our case, 
ROC curves for any specific value of 

! 

" " T  may be obtained by plotting 

! 

P
d
 = 

! 

P (z " z
2
(z
1
, # # T )) vs. 

! 

Pfa  = 

! 

P (z " z
1
), where 

! 

z
2
(z
1
, " " T )  has the basic functional form shown in Eqn. (7). Sample ROC 

curves at a fixed value of 

! 

" # # B 
 are shown in Figure 5. 

 
3. Extrapolation to particles at detector interface 
 
 Unless the detectors associated with our inspection system are 100% efficient (not likely to 
be the case), the next step in the analysis of our threat decision metric will be to extrapolate the 
various critical values defined in § 2 above in terms of measured counts (e.g. 

! 

" " D (crit) , 

! 

" " T (crit) 
and 

! 

SNR( " " T (crit))) back to their counterparts defined in terms of particles arriving at the detec-
tor interface (e.g. 

! 

" D (crit) , 

! 

" T (crit) and 

! 

SNR( " T (crit))). Although we rarely stop to think about 
it, detector counting statistics actually reflect the conditional binomial probability 

! 

h(y," | x)  of 
recording exactly 

! 

y  out of a possible 

! 

x  incident particles given a fixed “probability of success” 
(i.e. detection efficiency) 

! 

"  for each particle (cf. Appendix A). With this in mind, it can readily 
be shown that 

! 

" D (crit)  and 

! 

" T (crit) are given by: 
 
  

! 

" D (crit) = " " D (crit) #  (10) 
 
  

! 

" T (crit) = " " T (crit) #  , (11) 
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which certainly comes as no surprise; however, the general relationship between 

! 

SNR( " T (crit))  
and 

! 

SNR( " " T (crit)) is not quite as straightforward: 
 

  

! 

SNR( " T (crit)) =
" T (crit)

# " T 

2
+# " B 

2
=

" T (crit)

" T (crit) +# " B 

2
 

 

    

! 

=
" " T (crit) #

" " T (crit) # + $ " " B 

2
% (1%#) " " B ( ) # 2

 . (12a) 

 
If (again, as is likely the case) the background signal 

! 

" " B  is distributed Poisson (i.e. 

! 

" # # B 

2  = 

! 

" " B ), 
then Eqn. (12a) reduces to the familiar result: 
 

  

! 

SNR( " T (crit)) =
" " T (crit) #

" " T (crit) # + " " B #
=

" " T (crit) #

" " T (crit) + " " B ( ) #
 

 

    

! 

=
" " T (crit) #

" " T (crit) +$ " " B 

2( ) #
= SNR( " " T (crit)) #  . (12b) 

 
4. Estimating true threat signal strength 
 
 Having defined the critical SNM threat signal level for our decision metric in terms of both 
measured counts (

! 

" " T (crit)) and particles arriving at the detector interface (

! 

" T (crit)) for a given 
set of system operational parameters (e.g. 

! 

Pfa  and 

! 

P
d
), the operative question becomes, “What 

does this tell us about the critical value of the true threat signal 

! 

T (crit)  at its origin and, in par-
ticular, what does it tell us about the smallest mass of SNM that we could reasonably expect to 
detect with a cargo inspection system such as the NCW?” The answer in both cases is, unfortu-
nately, almost nothing (how anticlimactic!). 
 The critical value of the true SNM threat signal at its origin will depend on the detailed de-
sign of the inspection system and the specific threat scenario considered. While the background 
signal statistics (e.g. 

! 

" " B  and 

! 

" # # B 

2 ) can, in principal, be measured with almost arbitrary precision 
by averaging over many “clean” containers, the exact values of 

! 

" " B  and 

! 

" # # B 

2  (and hence the val-
ues of 

! 

" " T (crit) and 

! 

" T (crit) for our decision metric) will depend on the efficiency of the detec-
tors used in the inspection system and their location relative to the container. Even if the back-
ground signal statistics are assumed to be well known, the true SNM threat signal will still de-
pend on a plethora of other factors including the intensity and energy spectrum of the neutron 
probe used by the inspection system, the elemental composition and physical arrangement of le-
gitimate cargo in the container, the physical configuration of the SNM (e.g. spheres, cylinders, 
plates, powder, etc.) and its proximity to legitimate (or clandestine) materials which might acci-
dentally (or intentionally) tend to conceal its presence in some way and, needless to say, the ac-
tual location of the SNM in relation to the neutron source and detector system (note that all fac-
tors associated with the shape of the SNM, its shielding (whether accidental or intentional) and 
its final placement in the container are at the complete discretion of the nefarious characters at-
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tempting to smuggle the material in). Although some simplifying assumptions can certainly be 
made (e.g. homogeneous cargo distributions, pure exponential attenuation of neutron and γ-ray 
fluxes, etc.), the shear complexity of this eclectic mix of largely indeterminate variables makes 
the task of extracting a unique value for the true SNM threat signal 

! 

T (crit)  at its origin analyti-
cally intractable from any practical point of view; however, as intrepid scientists we needn’t be 
discouraged by this minor inconvenience, because this is a perfect example the sort of problem 
that God created Monte Carlo codes to address! 
 Modern, general-purpose Monte Carlo radiation transport algorithms such as LLNL’s COG 
code package [6] are now capable of simulating not only the physical layout of proposed cargo 
inspection systems such as the NCW, but also the detailed characteristics of the system’s high-
intensity D(d,n)3He neutron source [7] and the β-delayed γ-ray spectra emitted during the decay 
of neutron-induced SNM fission products [8]. A series of Monte Carlo simulations of the NCW 
system could easily be done with different physical configurations of SNM placed in the most 
challenging locations in a container with “worst-probable-case” cargo configurations to obtain 
credible values for the limiting number of γ rays that one might expect to see at the detector in-
terface in those scenarios. When coupled with measured detector efficiencies and either meas-
ured values or “worst-case” simulations of the background signal, these calculations could then 
be used to at least place an upper bound on the value of 

! 

T (crit)  and thereby derive an estimate 
for the smallest mass of SNM that we could reliably detect. 
 
5. Summary and comments 
 
 The statistical properties of the threat decision metric 

! 

" " D  = 

! 

" " S -

! 

" " B  have been described and 
procedures have been outlined for using it in conjunction with a cargo inspection system such as 
the NCW to define critical (i.e. minimum detectable) SNM threat signal levels in terms of both 
measured counts (

! 

" " T (crit)) and particles arriving at the detector interface (

! 

" T (crit)) for a given 
set of system operational parameters (e.g. 

! 

Pfa  and 

! 

P
d
). It was also noted that that, regardless of 

how well the background signal statistics (e.g. 

! 

" " B  and 

! 

" # # B 

2 ) are eventually known, the complex 
mix of largely indeterminate variables associated with NCW inspection scenarios will make the 
task of extracting a unique value for the true SNM threat signal 

! 

T (crit)  at its origin analytically 
intractable; however, detailed Monte Carlo simulations of a carefully-chosen set of “worst-case” 
inspection scenarios should allow us to at least bound the problem and derive meaningful esti-
mates for 

! 

T (crit)  and the smallest detectable mass of SNM. 
 Finally, it should be noted that, while the present report has focused on the potential use of 
this decision metric with the NCW inspection system, it is perhaps even better suited for use in 
conjunction with the so-called “long dwell time” problem in which small radiation detectors are 
placed in individual containers aboard ship and allowed to integrate over the local background 
and any potential SNM threat signal for the entire time that the ship is at sea in transit between 
ports. In this case, the passive SNM threat signal (if any) will be due to β-delayed γ rays from 
spontaneous fission products along with α decay of certain SNM isotopes and the background 
signal will be due almost entirely to cosmic rays and the decay of naturally-occurring radioiso-
topes in the surrounding cargo. Since these radiation sources are known to be distributed Pois-
son, the procedures for using the metric would actually be more straightforward. 
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Appendix A (a brief statistics lesson) 
 
 Let 

! 

X  be a discrete random variable (RV) with probability distribution function (PDF) 

! 

g(x)   
that represents the total number of events associated with some physical process of interest (we 
will avoid making assumptions about 

! 

g(x)  here - perhaps it is Poisson, perhaps not) and let 

! 

Y  ≤ 

! 

X  be a related discrete RV with conditional PDF 

! 

h(y," | x)  that represents the subset of these 
events that arrive at some remote location or are recorded by a physical detector of some sort, in 
either case with a probability of success 

! 

"  (

! 

h(y," | x)  is simply the binomial probability of re-
cording exactly 

! 

y  out of a possible 

! 

x  events given a fixed value of 

! 

" ). By definition then, the 
expected value of any function of 

! 

Y  may be written as: 
 

    

! 

f (Y ) = f (y)h(y," | x)
y = 0

x

#
$ 
% 
& 

' 
( 
) x = 0

X

# g(x) 

 

  

! 

= f (y)
x!

y!(x " y)!

# 
$ 
% 

& 
' 
( 
) y
(1"))x"y

y = 0

x

*
# 
$ 
% 

& 
' 
( x = 0

X

* g(x) . (A1) 

 
 An expression for the expected (mean) value of 

! 

Y  may be derived by setting 

! 

f (Y ) = 

! 

Y  in 
Eqn. (A1) (note that the first term in the inner sum over 

! 

y  may be dropped in this case since it 
does not contribute). Thus: 
 

   

! 

Y = Y = y
x!

y!(x " y)!

# 
$ 
% 

& 
' 
( 
) y
(1"))x"y

y = 1

x

*
# 
$ 
% 

& 
' 
( x = 0

X

* g(x)  

 

  

! 

=
x!

(y "1)!(x " y)!

# 
$ 
% 

& 
' 
( 
) y
(1"))x"y

y = 1

x

*
# 
$ 
% 

& 
' 
( x = 0

X

* g(x) 

 

  

! 

= " x
(x #1)!

(y #1)!(x # y)!

$ 
% 
& 

' 
( 
) 
" y#1

(1#")x#y

y = 1

x

*
$ 
% 
& 

' 
( 
) x = 0

X

* g(x) 

 

  

! 

= " x
(x #1)!

v!((x #1) # v)!

$ 
% 
& 

' 
( 
) 
" v
(1#")(x#1)#v

v = 0

x#1

*
$ 
% 
& 

' 
( 
) x = 0

X

* g(x)         (†) 

 

  

! 

= " x 1{ }
x = 0

X

# g(x) = " X = " X  , (A2)  

 
where we replaced 

! 

y "1 with the dummy variable 

! 

v  at (†) and recognized that the sum over 

! 

v  
then included all possible outcomes of a binomial PDF based on 

! 

x "1 trials and was, therefore, 
equal to 1. While this was instructive, the fact that 

! 

Y  = 

! 

" X  certainly comes as no surprise. Be 
patient, though – the relationship between 

! 

"
Y

2  and 

! 

"
X

2  is more interesting. 
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 The easiest way to derive an expression for 

! 

"
Y

2  at this point is to make use of the following 
identities (true for any random variable V): 
 
  

! 

"
V

2
= V

2
# V

2
= V (V #1) + V # V

2 . (A3) 
 
Since we already know that 

! 

Y  = 

! 

" X , the only other quantity we need to find is 

! 

Y (Y "1) . 
Following the same basic procedure used in Eqn. (A2) (and noting that this time the first two 
terms may be dropped from the sum over 

! 

y  since neither contributes), it can readily be shown 
that 

! 

Y (Y "1)  = 

! 

" 2 X (X #1) . Thus, 

! 

"
Y

2  may be written as: 
 
    

! 

"
Y

2
= Y (Y #1) + Y # Y

2  
 
  

! 

= " 2 X (X #1) + " X # " X( )
2  

 
  

! 

= " 2 X
2
#" 2 X + " X #" 2 X

2 
 
  

! 

= " X #" 2 X
2

+ " 2 X
2
# X

2( )  
 
  

! 

= " (1#") X + " 2$
X

2
= " (1#")X + " 2$

X

2  . (A4) 
 

The result for 

! 

"
Y

2  derived in Eqn. (A4) is intuitively reasonable since we expect the variance 
in 

! 

Y  to be related to the variance due to attenuation for a given value of 

! 

X  plus the variance in 

! 

X  itself. Since a given value of 

! 

X  produces 

! 

Y  events with binomial variance 

! 

" (1#") , the total 
variance due to attenuation is just 

! 

" (1#")X . Similarly, the variance in 

! 

X  (

! 

"
X

2 ) is subject to an 
average gain of 

! 

" , so this component of the variance in 

! 

Y  is weighted by 

! 

" 2 . Note that, if 

! 

X  is 
Poisson (i.e. if 

! 

"
X

2  = 

! 

X ), then Eqn. (A4) reduces to the familiar result 

! 

"
Y

2  = 

! 

" X  = 

! 

Y . 
 Equation (A4) can also be inverted with the help of Eqn. (A2) to derive an expression for 

! 

"
X

2  
in terms of 

! 

"
Y

2  and 

! 

Y  if desired: 
 
    

! 

"
X

2 = "
Y

2
# (1#$)Y ( ) $ 2  (A5) 

 
(note that, as with Eqn. (A4), if 

! 

Y  is Poisson (i.e. if 

! 

"
Y

2  = 

! 

Y ), then Eqn. (A5) reduces to the fa-
miliar result 

! 

"
X

2  = 

! 

Y "  = 

! 

X ). Thus, if 

! 

"
X

2  is unknown and if 

! 

"
Y

2  can be estimated from experi-
mental data using a standard (unbiased) estimator of the form: 
 

   

! 

ˆ " 
Y

2 = Y
i
#Y ( )

2

N #1( )
i = 1

N

$  , (A6) 

 
then an unbiased estimate for 

! 

"
X

2  may be obtained by simply calculating: 
 
   

! 

ˆ " 
X

2 = ˆ " 
Y

2
# (1#$)Y ( ) $ 2  . (A7) 
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Figure 1a: Sample plot of critical metric value (measured counts) vs. standard deviation in background signal for Pfa 
= 0.001. If the measured value of D" exceeds D"(crit), then we may confidently declare the container to be a nuclear 
threat knowing that the probability of our being wrong is less than or equal to Pfa. 
 

 
 
Figure 1b: Sample plots of critical metric value (measured counts) vs. average background signal for Pfa = 0.001. 
The blue curve represents the case in which the background signal is distributed Poisson (i.e. Var(B") = B"(ave)) 
while the red curve represents the pessimistic case in which Var(B") = B"(ave) 2 . 

σ(B") = B"(ave)  

σ(B") = √B"(ave)  
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Figure 2: Sample plots of metric power (i.e. probability of detection Pd) vs. average threat signal (measured counts) 
for Pfa = 0.001 and standard deviations in the background signal of σ(B") = 25, 100 and 400. This type of plot is 
useful in assessing the general relationship between threat signal levels and Pd. 
 

 
 
Figure 3a: Sample plot of critical average threat signal (measured counts) vs. standard deviation in background sig-
nal for Pfa = 0.001 and Pd = 0.950. This type of plot is useful in determining the critical threat signal if a specific 
target value of Pd has already been defined based on performance requirements. 

100 25 400 
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Figure 3b: Sample plots of critical average threat signal (measured counts) vs. average background signal for Pfa = 
0.001 and Pd = 0.950. The blue curve represents the case in which the background signal is distributed Poisson (i.e. 
Var(B") = B"(ave)) while the red curve represents the pessimistic case in which Var(B") = B"(ave) 2 . 
 

 
 
Figure 4a: Sample plot of critical average threat SNR (measured counts) vs. standard deviation in background sig-
nal for Pfa = 0.001 and Pd = 0.950. Note that the curve asymptotically approaches z1(crit)-z2(crit) = 4.745 as σ(B") -> 
∞; therefore, an experimental SNR ≥ 4.745 should always provide Pfa = 0.001 and Pd = 0.950. 

σ(B") = B"(ave)  

σ(B") = √B"(ave)  
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Figure 4b: Sample plots of critical average threat SNR (measured counts) vs. average background signal for Pfa = 
0.001 and Pd = 0.950. The blue curve represents the case in which the background signal is distributed Poisson (i.e. 
Var(B") = B"(ave)) while the red curve represents the pessimistic case in which Var(B") = B"(ave) 2 . 
 

 
 
Figure 5: Sample “Receiver Operating Characteristic” (ROC) curves for average threat signal levels T"(ave) = 300-
500 assuming a fixed standard deviation in the background signal of σ(B") = 100. The dashed curve represents the 
critical value of T"(ave) for which it is possible to simultaneously obtain Pfa = 0.001 and Pd = 0.950. 

σ(B") = B"(ave)  

σ(B") = √B"(ave)  
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